Spectrum AnalysisBack to BasicsBack to Basics Seminar1

AgendaIntroductionOverview:– What is Spectrum and Signal Analysis?– What Measurements are available?Theory of OperationSpecificationsModern spectrum analyzer designs & capabilitiesApplicationsAutomation ToolsWrap-upBack to Basics Seminar2

OverviewFrequency versus Time DomainAmplitude(power)Time domainMeasurementsFrequency DomainMeasurements(Oscilloscope)(Spectrum Analyzer)Back to Basics Seminar3

OverviewTypes of Measurements AvailableFrequency, power, modulation, distortion &noise––––––––––Spectrum monitoringSpurious emissionsScalar network analysisNoise figure & phase noiseHarmonic & intermodulation distortionAnalog, digital, burst & pulsed RF ModulationWide bandwidth vector analysisElectromagnetic interferenceMeasurement range (-172 dBm to 30 dBm)Frequency range (3 Hz to 325 GHz)ModulationNoiseSpur SearchDistortion4

OverviewDifferent Types of AnalyzersSwept AnalyzerAFilter 'sweeps' over range ofinterestLCD shows fullspectral displayf1f2fBack to Basics Seminar5

OverviewDifferent Types of AnalyzersFFT AnalyzerParallel filters measuredsimultaneouslyALCD shows fullspectral displayf1f2fBack to Basics Seminar6

AgendaIntroductionOverviewTheory of Operation:– Swept Spectrum Analyzer HardwareSpecificationsModern spectrum analyzer designs & capabilitiesApplicationsAutomation ToolsWrap-upBack to Basics Seminar7

Theory of OperationSwept Spectrum Analyzer Block DiagramRF inputattenuatorIF gainIF re-SelectorOr Low PassInput talReferenceOscillatorADC, Display& VideoProcessingBack to Basics Seminar8

Theory of OperationDisplay terminologyAmplitudeReferenceLevelStart Freq.Stop Freq.Freq. SpanCenter Freq.Back to Basics Seminar9

Theory of OperationMixerMIXERRFf sigLOf sig1.5 GHz3.6 GHzf LO - f sigIFf LOf LO f sigf LO6.5 GHzBack to Basics Seminar10

Theory of OperationIF Filter (Resolution Bandwidth – RBW)IF FilterInputSpectrumIF Bandwidth(RBW)DisplayABCBack to Basics Seminar11

Theory of OperationEnvelope DetectorBefore detectorAfter detectorEnvelopeDetectorBack to Basics Seminar12

Theory of OperationEnvelope Detector and Detection TypesDigitally Implemented Detection Typesbins/buckets*EnvelopeDetectorADC, Display &Video ProcessingPositive detection: largest valuein bin displayedNegative detection: smallest valuein bin displayedSample detection: middle value in bindisplayedOther Detectors: Normal (Rosenfell),Average (RMS Power)*Sweep pointsBack to Basics Seminar13

Theory of OperationAverage Detector TypeEnvelopeDetectorVoltsPos PeakdetectionADC, Display &Video ProcessingbinxSampledetectionxxNeg PeakdetectionTimePower Average Detection (rms) Square root of the sum of theΩsquares of ALL of the voltage data values in the bin /50ΩBack to Basics Seminar14

Theory of OperationVideo Filter (Video Bandwidth – VBW)VideoFilterBack to Basics Seminar15

Theory of OperationVideo Filter vs. Trace/Video averagingVideo FilterADC, Display & VideoProcessing Video Filter operates as the sweepprogresses, sweep time may be required toslow down by the transient response of theVBW filter. Trace/Video Average takes multiplesweeps, sweep time for each sweep is notaffectedTrace averaging for 1, 5, 20, and 100 sweeps, top tobottom (trace position offset for each set of sweeps) Many signals give the same results witheither video filtering or trace averagingBack to Basics Seminar16

Theory of OperationOther ComponentsLOSWEEPGENRF INPUTATTENUATORLCD Display, ADC& Video processingIF GAINBack to Basics Seminar17

Theory of OperationHow it All Works Together - 3 GHz spectrum analyzerfs0Signal Range12LO Rangef LOf LO - f s3 (GHz)f LO f sfsIF filtermixer012433.6input5detector66.53.6 GHzf IFsweep generatorALOf LO0433.656(GHz)123 (GHz)fLCD display6.5Back to Basics Seminar18

AgendaIntroductionOverviewTheory of OperationSpecifications:– Which are important and why?Modern spectrum analyzer designs & capabilitiesApplicationsAutomation ToolsWrap-upBack to Basics Seminar19

Key Specifications Frequency Range Accuracy: Frequency & Amplitude Resolution Sensitivity Distortion Dynamic RangeBack to Basics Seminar20

SpecificationsAccuracy: Frequency & amplitudeComponents which contribute to uncertainty are: Input mismatch (VSWR) RF Input attenuator (Atten. switching uncertainty) Mixer and input filter (frequency response) IF gain/attenuation (reference level accuracy) RBW filters (RBW switching uncertainty) Log amp (display scale fidelity) Reference oscillator (frequency accuracy) Calibrator (amplitude accuracy)Back to Basics Seminar21

SpecificationsAbsolute and Relative Accuracy: Frequency & AmplitudeAbsoluteAmplitudein dBmRelativeAmplitudein encyNote: Absolute accuracy is also “relative” to the calibrator reference pointBack to Basics Seminar22

SpecificationsAccuracy: Frequency Readout AccuracyDetermined by ReferenceAccuracy From the PXA Data Sheet: (marker frequency x freq reference accuracy 0.1%*span 5% of RBW 2Hz 0.5 x Horiz. Res.*)RBW ErrorIF filter center frequency errorSpan AccuracyResidual Error*Horizontal resolution is span/(sweep points – 1)Back to Basics Seminar23

SpecificationsAccuracy: Frequency Readout Accuracy ExampleFrequency: 1 GHzSpan:400 kHzRBW:3 kHzSweep points: 1000Calculation:: (1x109Hz) x ( 1.55x10–7/Year ref. Error)400kHz Span x 0.1%3kHz RBW x 5%2Hz 0.5 x 400kHz/(1000-1)Total uncertainty 155Hz 400Hz 150Hz 202Hz 907HzUtilizing internal frequency counter improves accuracy to 155HzBack to Basics Seminar24

SpecificationsAccuracy: Frequency ResponseSignals in the Same Harmonic Band 1 dB0- 1 dBBAND 1Absolute amplitude accuracy – Specification: 1 dBRelative amplitude accuracy – Specification: 2 dBBack to Basics Seminar25

SpecificationsAccuracy: Display FidelityDisplay Fidelity includes: Log Amp FidelityDisplay Fidelity Envelope Detector Linearity26 Digitizing Circuit LinearityDisplay fidelity error applies when signalsare not at the same reference levelamplitude when measuredIn the past, technique for best accuracywas to move each measured signal tothe reference line, eliminating displayfidelity error.

SpecificationsAmplitude Accuracy: Reference Level SwitchingUncertainty applies when changing theRef. LevelAlso called IF Gain UncertaintyDecision: Do I change the referencelevel or live with the display fidelityuncertainty in my measurements?27

SpecificationsAccuracy: Key Amplitude Uncertainty ContributionsRelative and absolute:PXA Uncertainties Input impedance mismatch( 0.13 dB) Input attenuator switching uncertainty( 0.14 dB) Frequency response( 0.35 dB) Reference level accuracy(0 dB) RBW switching uncertainty( 0.03 dB) Display scale fidelity( 0.07 dB)Absolute only: Calibrator accuracy( 0.24 dB)Back to Basics Seminar28

SpecificationsAmplitude Accuracy - SummaryOptimize measurement setup & techniques for best accuracy Minimize changes to uncertainty contributors–Or change contributor with least error impact–Or stay within the optimum accuracy envelope parameters thatmodern auto-alignment calibration techniques provideTraditionally, one technique for best accuracy was to move each measuredsignal to the reference line, eliminating display fidelity error. However, intoday’s designs, display fidelity has improved to the point where there isgenerally less error just to leave the signals where they occur on thedisplay.Except for frequency response, uncertainty contributors that impact bothsignals equally in a relative measurement can be ignored.In the absence of specified relative frequency response, the relativeresponse uncertainty is assumed to be 2x specified absolute error.Back to Basics Seminar29

SpecificationsResolution: Resolution BandwidthMixer3 dB BW3 dBEnvelopeDetectorInputSpectrumLOIF Filter/Resolution Bandwidth Filter (RBW)SweepRBWDisplayBack to Basics Seminar30

SpecificationsResolution BW Selectivity or Shape Factor3 dB3 dB BW60 dB60 dBBWSelectivity 60 dB BW3 dB BWDetermines resolvability of unequal amplitude signalsBack to Basics Seminar31

SpecificationsResolution BW Selectivity or Shape FactorRBW 10 kHzRBW 1 kHzSelectivity 15:13 dBdistortionproducts7.5 kHz60 dB60 dB BW 15 kHz10 kHz10 kHzBack to Basics Seminar32

SpecificationsResolution: RBW Type and SelectivityTypical SelectivityAnalog 15:1Digital 5:1ANALOG FILTERDIGITAL FILTERRES BW 100 HzSPAN 3 kHzBack to Basics Seminar33

SpecificationsResolution: Noise SidebandsPhase NoiseNoise Sidebands can preventresolution of unequal signalsBack to Basics Seminar34

SpecificationsResolution: RBW Determines Sweep TimeMeas UncalSwept too fastPenalty For Sweeping Too FastIs An Uncalibrated DisplayBack to Basics Seminar35

Res BWFilterLOSweepA Spectrum Analyzer Generates and Amplifies Noise JustLike Any Active CircuitBack to Basics Seminar36

SpecificationsSensitivity/DANLSensitivity is the Smallest Signal That Can BeMeasuredSignalEqualsNoise2.2 dBBack to Basics Seminar37

SpecificationsSensitivity/DANLEffective Level of Displayed Noise is a Functionof RF Input Attenuationsignal level10 dBAttenuation 10 dBAttenuation 20 dBSignal To Noise Ratio Decreases asRF Input Attenuation is IncreasedBack to Basics Seminar38

SpecificationsSensitivity/DANL: IF Filter(RBW)Displayed Noise is a Function of IF FilterBandwidth100 kHz RBW10 dB10 kHz RBW10 dB1 kHz RBWDecreased BW Decreased NoiseBack to Basics Seminar39

SpecificationsSensitivity/DANL: Video BW filter (or Trace Averaging)Video BW or Trace Averaging Smoothes Noise for EasierIdentification of Low Level SignalsBack to Basics Seminar40

SpecificationsSensitivity/DANL:Signal-to-Noise Ratio Can Be Graphed0SIGNAL-TOTO-NOISE RATIO, dBc.-20Displayed Noise in a1 kHz RBW-40-60-80-100-60Displayed Noise in a100 Hz RBW-300 30POWER AT MIXER INPUT - ATTENUATOR SETTING dBmBack to Basics Seminar41

SpecificationsSensitivity/DANL: SummaryFor Best Sensitivity Use: Narrowest Resolution BW Minimum RF Input Attenuation Sufficient Averaging (video or trace)Back to Basics Seminar42

SpecificationsDistortionMixers Generate DistortionFrequency TranslatedSignalsResultantSignal ToBe MeasuredMixer GeneratedDistortionBack to Basics Seminar43

SpecificationsDistortionMost Influential Distortion is the Second and ThirdOrder -50 dBcTwo-Tone Intermod -40 dBc -50 dBcHarmonic DistortionBack to Basics Seminar44

SpecificationsDistortionDistortion Products Increase as a Function ofFundamental's Power33Third-order distortionPowerin dB2f 1- f2f1f2Second-order distortion2f 2- f1Two-Tone Intermod2Second Order: 2 dB/dB of FundamentalThird Order: 3 dB/dB of Fundamental3Powerin dBf2f3fHarmonic DistortionBack to Basics Seminar45

SpecificationsDistortionDistortion is a Function ofMixer Level0DISTORTION, POWER AT MIXER INPUT - ATTENUATOR SETTING dBm 30SHIBack to Basics Seminar46

SpecificationsDistortion – Internal or External?Attenuator Test:Change power to the mixerOriginal distortion signalSignal with 10dB input attenuation1 Change input attenuatorby 10 dB2 Watch distortion amplitude onscreenNo change in amplitude: distortionis part of input signal (external)Change in amplitude:at least some of the distortion is beinggenerated inside the analyzer (internal)Back to Basics Seminar47

SpecificationsSpectrum Analyzer Dynamic RangeDynamicRangeThe ratio, expressed in dB, of the largest to the smallestsignals simultaneously present at the input of the spectrumanalyzer that allows measurement of the smaller signal to agiven degree of uncertainty.Back to Basics Seminar48

SpecificationsDynamic RangeDynamic Range Can Be Presented GraphicallySIGNAL-TO-NOISENOISE RATIO, dBcMaximum 2nd OrderDynamic Range.-20Maximum 3rd OrderDynamic Range-40-60-80-100-60-300TOIPOWER AT MIXER INPUT - ATTENUATOR SETTING dBm 30SOIOptimum Mixer LevelsBack to Basics Seminar49

SpecificationsDynamic RangeDynamic Range for Spur Search Depends on Closeness toCarrierDynamic RangeLimited ByCompression/NoiseDynamic RangeLimited By Noise SidebandsdBc/HzDisplayed AverageNoise LevelNoise Sidebands100 kHzto1 MHzBack to Basics Seminar50


SpecificationsSummary: Optimizing Dynamic Range What settings provide the best sensitivity? Narrowest resolution bandwidth Minimal input attenuation Sufficient averaging How do you test for analyzer distortion? Increase the input attenuation and look for signal amplitude changes Then set the attenuator at the lowest setting without amplitude change What determines dynamic range? Analyzer distortion, noise level, and sideband/phase noiseBack to Basics Seminar52

AgendaIntroductionOverviewTheory of OperationSpecificationsModern spectrum analyzer designs & capabilities– Wide Analysis Bandwidth MeasurementsApplicationsAutomation ToolsWrap-upBack to Basics Seminar53

Modern Spectrum Analyzer Block DiagramDigital IFFilterAnalog IFFilterPre-ampDigital DetectorsFFTAttenuationSwept vs . FFTYIGDigital Log AmpADCReplacedbyBack to Basics Seminar54

Modern Spectrum Analyzer Block DiagramAuto Alignment Temp & time calibration3 to 26.5 GHz Pre-ampImprove 1 GHzDANL -155dBmto -165dBmAnalogPre-FilterDigital IF Filters 160 RBW filters 4.1:1 Shape factor Fast sweep 1 Hz to 8 MHz EMI RBW’s (Opt. EMC) 0.03 dBswitching errorDigital Detectors Normal RMS Peak Avg Min QPD (Opt. EMC) Sample(Single Pole)FFTAttenuation2 dB stepto 26.5 GHzDigitally Synthesized LO Fast tuning Close-in phase noise Far-out phase noiseFFT vs Swept RBW Faster Sweepw/Max DR16 bit ADC Wider dynamic rangewith autoranging Dither on/offDigital Log Amp 0.07 dB Scale Fidelity 100 dB Dynamic range 0.0 dB reference level errorDigital Video Filters Power, voltage,log filteringFrequency Counter Fast (0.1s) High resolution (mHz)Back to Basics Seminar55

Modern Spectrum Analyzer - SpecificationsDigital IF provides improved accuracyPXA vs. Traditional Input impedance mismatch 0.13 0.29 dB Input attenuator switching uncertainty 0.14 0.6 dB Frequency response 0.35 1.8 dB Reference level accuracy 0.0 1.0 dB RBW switching uncertainty 0.03 0.5 dB Display scale fidelity 0.07 0.85 dB Calibrator accuracy 0.24 0.34 dBTotal accuracy (up to 3 GHz)95% Confidence 0.59 dB vs. 1.8 dB 0.19 dBBack to Basics Seminar56

Wide band analysis140 MHz PathADC Nominal bits: 14ADC Effective bits: 11.2SFDR: up to 75 dBcPXA Simplified Block Diagram (140 MHz BW)140 MHz BW (option B1X)2GbyteSDRAM140 MHzFront EndFPGAADC3.5-26.5 GHz high band8.3-14GHz LOASIC400 MHz CK40 MHz BW (option B40)3 Hz-26.5 GHzInput40 MHz2 2 6 10 2030ADCF0 250 MHz200 MHz CKElectronic Preamp, e-attenuatorCal inputand calibrator switchesRF converter4.8 GHzLOAuxIF Out10.9M25MHz.3MSwitched filters,F0 322.5 MHz.SAWACP2Gbyte140 MHz966KLinearityCorrections303K2nd converterADCFPGA79KRFpreamp9K0-3.6 GHz low bandSDRAM300 MHzLODAC4 GHz1 dB-stepelectronicattenF0 322.5 MHz100 MHzCKASICSwitched filters,F0 22.5 MHzSwept IF,10 MHz & 25 MHz BW (option B25)Back to Basics Seminar69

Noise Floor Extension The combination of real-time measurement processing with an unprecedented characterizationof the analyzer’s own noise to allow that noise to be accurately removed from measurements. The improvement from noise floor extension varies from about 3.5 dB for CW and pulsedsignals to approximately 8 dB for noise-like signals, and up to 12 dB or more in someapplications. DANL at 2 GHz is–161 dBm without a preamp and –172 dBm with the preamp.Page 58

AgendaIntroductionOverviewTheory of OperationSpecificationsModern spectrum analyzer designs & capabilitiesApplications– Digital Modulation– Phase Noise– Noise FigureAutomation ToolsWrap-upBack to Basics Seminar59

Application Focused Internal SoftwareGeneral purposeapplicationsPhase noiseExt. source controlNoise figureCode compatibility suiteEMI pre-complianceAnalog demodFlexible digitalmodulation analysisFlexible demodLTE FDD, TDDW-CDMA/HSPA/HSPA Power & digitalmodulationmeasurements forwireless commsformatsGSM/EDGE/EDGE Evocdma2000 & 1xEV-DOcdmaOneDVB-T/H/C/T2TD-SCDMA/HSPAWLAN (802.11a/b/g/p/j)802.16 OFDMABluetooth60s7

Slide 60s7change pictures for PXAshanscon, 12/2/2010

Built-in One-Button Power Measurements Occupied Bandwidth Channel Power ACP Multi-carrier ACP CCDF Harmonic Distortion Burst Power TOI Spurious Emissions Spectral EmissionsMaskBack to Basics Seminar61

Why Use Digital Modulation?-More information capacity & more spectrally efficient thananalog modulation-Compatibility with digital data services-Higher data security-Better quality communicationsIndustry Trend

What is Digital Modulation? Restricts modulating basebandsignal to discrete states (Digital) Project Signals to “I” and “Q” Axes Polar to Rectangular Conversion IQ Plan Shows 2 Things What the modulated carrier is doing relative tothe unmodulated carrier What baseband I and Q inputs are required toproduce the modulated carrier

Some Simple Examples of Digital ModulationModulation Number of bits BPSK110IF01QPSKQ2I1011Q16 QAM400F/20000IF/4Symbol Rate #symbols/sec. (Hz)

Digital Format Access SchemesOneUserFDMADifferent channel - different UsersCDMASame channel – many usersDifferent time - different UsersTDMADifferent time - different UsersOFDM

How to Digitally Modulate/Demodulate?ModulateDemodulateQ:QII:

Measurements of Quality for Digital ModulationDemodulated signal I/Q values are comparedwith ideal expected constellation location. Thedifference is the Error Vector Magnitude (EVM)Overall measurement ofsignal quality is rms EVMgiven in percent of dB.EVM can also be displayedversus time andversus frequency

Tools for Digital Modulation AnalysisEmbedded Software Applications : Over 30 modulation format specific measurementapplications which run inside the X-series analyzers. Best solution for manufacturing where speed isrequired.Software: 89601B VSA Software Supports over 70 modulation formats. Runs on an external PC, or inside hardware. Best solution for R&D where flexibility andtroubleshooting tools are required

Phase Noise OverviewWhat is “Phase Noise”? A random, side band noise Caused by phase fluctuations of an oscillatorP(t)P(f)Phase noiseCarrierPhase noisetfIn the time domain, PN shows as jittersPage 69In freq. domain, PN appears as noise sidebandsTitle of Presentation13 September 2011Agilent Restricted

Phase Noise OverviewHow to define “Phase Noise”?3 elements:P0- Offset freq. from carrier freq.SSB- Power spectral density (in 1 HzBW)- Relative to carrier power in dBcdBc/Hz @ offset freq. fm1 Hz BWf0fm (offset freq.)Agilent RestrictedPage 70Title of Presentation13 September 2011

Why is phase noise important?PowerOFDM subcarriersPowerFrequencyDown-convertedOFDM sub-carrierswith LO phase noiseaddedPowerPhase noiseFrequencyLocal oscillatorwith phase noise Better PN of the LO improves sub-channel resolutionFrequency

Direct Spectrum Measurement Method Easy to configure and use Quick phase noise check Log pot Spot frequency (PN change vs. time) rms PN, rms Jitter, residual FM X-Series phase noise application automatesthe PN measurements Limited by SA internal PN floor Caution: Direct Spectrum method requiresAM PM72Phase noise result in Log Plot9/13/2011

What is Noise Figure ?SiF NiSoNoSignal/Noise Degradation60708090SiNi GSi(Na GNi)dBm100110120130Na GNi GNi(1)140150160CF 850 MHz Span 100 MHzInputOutput

Noise in Cascaded Two Port NetworksBG1 , Na1BG2 , Na2NokTo BF2 - 1Fsys F1 G1

How to Measure Noise Figure:Noise Linearity2909000Noisw Power-123.2 .10122.4 .10121.61 .10128.08 .10132.89510 ( k T B Ga) Na-131.90010 1 .10DUT140200040006000800041 .10TkTo BkTh BNoise PowerMeasurement

Corrected Noise FigureF2 - 1Fsys F1 G1F2 - 1F1 Fsys G1N'2 - N'1G1 N 2 - N1(13)(14)N2 noise source onN1 noise source off

Noise Figure Uncertainty

AgendaIntroductionOverviewTheory of OperationSpecificationsModern spectrum analyzer designs & capabilitiesApplicationsAutomation ToolsWrap-upBack to Basics Seminar78

LAN eXtension for InstrumentationLXI devices serve a web pageIP Address Manufacturer Model # Serial # Firmware rev. IP Address Domain name etc.Ability tochange theIP addressPage 79

X-Series LXI Web control exampleDisplayKeypadBack to Basics Seminar80

LXI sFlexibletriggeringNo triggerwiresExpertTroubleshootingTimestampall dataParalleloperationsEliminatelatencySmart grammingPage 81

SystemVueOvercome early R&D measurement holes using simulationIf any of these pieces is missing .TX butno RX!!Test Equipmentpersonalitydoesn’t exist yet Fading &InterferenceThe standardjust changed!MultipleH/W forMIMO?Vendor is LATEgetting youhardwareWill this stillwork when Iadd the RFfront end?ModulatedRF in vs. Bits out how to measureThroughput? .Use SystemVue to complete a working PHY Finish create superior algorithms Make new or challenging link-level measurements, such as BER, Throughput Verify critical system-level performance, despite missing IP, Equip, or H/WDiscovering SystemVue82

SystemVue ExampleSimulatedEVM -47 dBMeasuredEVM -39 dBSignal GeneratorSignal AnalyzerBack to Basics Seminar83

MATLAB Software Control MATLAB software can now be installeddirectly on the signal analyzers.Key uses:1. Create, modify, and execute your ownapplications2. Analyze, filter, and visualize data3. Execute and test custom modulationschemes4. Generate arbitrary waveforms5. Automate measurements6. Configuration and control instruments% Example:MATLAB/MXA program% TCPIP parameters of the MXA boxmxa ip '';mxa port 5025;% MXA connection openingmxa tcpip(mxa ip,mxa port);fopen(mxa);% Intrument identificationidn query(mxa,'*IDN?');fprintf('Hello from %s', idn);% Set the center frequency to 1 GHzfprintf(mxa,':FREQ:CENT 1 GHz');% Set the span to 20 MHzfprintf(mxa,':FREQ:SPAN 20 MHz'); Series EnhancementsPage 84Page84

AgendaIntroductionOverviewTheory of OperationSpecificationsModern spectrum analyzer designs & capabilitiesApplicationsAutomation ToolsWrap-upBack to Basics Seminar85

An evolutionary approach to signal analysisthat spans instrumentation, measurements and softwarePXAPSA856xECMarket leadingperformance3 Hz to 50 GHzMid- performanceX-Series SignalAnalysisJust got better .Sep 09X-SeriesHigh-performance3 Hz to 26.5 GHzNEWMXASep 06X-SeriesMid-performance20 Hz to 26.5 GHzPrice****AGILENTAGILENT CONFIDENTIAL****NDA REQUIRED****AGILENT CONFIDENTIAL****NDA REQUIRED****Agilent X-Series Signal AnalysisEXAESAWorld’s most popular100 Hz to 26.5 GHz89600B VSAsoftwareSep 07Premier analysis &troubleshootingX-SeriesEconomy-class9 kHz to 26.5 GHzExpanded backwardcodecompatibility with856xE/EC, 66/68on PXA/MXA/EXACXAX-Series Sep 09Low-cost9 kHz to 7.5 GHzFeb 11Sep 09PerformanceBack to Basics Seminar86

Agilent Spectrum Analyzer Families (Handhelds)N9342C Handheld Spectrum Analyzer Handheld SA -- 100kHz to 7.0 GHz Fastest sweep – minimum sweep time 2ms –164 dBm displayed average noise level (DANL) typical 10 dBm third order intercept (TOI) Light weight, rugged and portable four hours battery lifeN9340B Handheld Spectrum Analyzer Handheld SA -- 100kHz to 3.0 GHz 10 ms non-zero span sweep time –144 dBm displayed average noise level (DANL) with pre-amplifier 10 dBm third order intercept (TOI) Light weight, rugged and portable four hours battery lifeBack to Basics Seminar87

Agilent Vector Signal Analysis Software89600B VSA Software FFT-based spectrum, time-domain & bit-level modulation analysis Support for more than 70 signal standards and modulation types 20:20 trace/marker capability and arbitrary window arrangement Digital persistence and cumulative history displays Wireless networking: 802.11a/b/g/n, 802.16 OFDMA, WiMAX Cellular: LTE (FDD/TDD), W-CDMA HSPA , GSM/EDGE Evolution Custom OFDM modulation analysis for proprietary signals Links to over 30 hardware platforms including: X-series signalanalyzers, 16800 logic analyzers, 90000 X-series scopes,Infiniium scopes, VXI Runs on external PC linked to hardware or embeddedoperation on instruments with Windows OSBack to Basics Seminar88

Basic Spectrum Analyzer Application & ProductNotesA.N. 150 – Spectrum Analysis Basics: #5952-0292ENA.N. 150-15 - Vector Signal Analysis Basics: #5989-1121ENSpectrum Analyzer & Signal Analyzer Selection Guide: #5968-3413EPXA Brochure: 5990-3951ENMXA Brochure: 5989-5047ENEXA Brochure: 5989-6527ENCXA Brochure: 5990-3927ENN9342B Brochure: 5990-5586EN89600B Brochure: to Basics Seminar89

THANK YOU!Back to Basics Seminar90

Spectrum Analyzer Dynamic Range Dynamic Range The ratio, expressed in dB, of the largest to the smallest signals simultaneously present at the input of the spectrum analyzer that allows measurement of the smaller signal to a given degree o